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Abstract:  A major goal of many intermediate physics labs is learning methods of data analysis.  In our Modern Lab 

course we introduce these methods in a planned sequence, with labs explicitly designed to match the sequence, so that 

students learn increasingly more sophisticated methods as the semester progresses.   The first lab has them investigate 

repeated measurements of a single quantity (the speed of electromagnetic pulses and speed of light) and introduces the 

concept of error propagation.  In the second lab they use a functional relation (lambda vs. sinθ ), for calibration of a 

diffraction grating, using residuals to optimize the fit.  Later labs introduce Gaussian and Poisson probability 

distributions, and Least-Squares fitting of functions (including non-linear minimization).  In addition, we provide here a 

few examples of how either methods or experiments can be adapted in order to support a coherent sequence of learning.    
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INTRODUCTION 

Learning data analysis methods in the course of an 

advanced physics lab is often challenging for the 

students because they are simultaneously learning 

several other new topics or skills, including the 

physical theories underlying the experiments, how to 

use scientific equipment, and how to write about or 

present their findings.  At the same time, teaching data 

analysis methods can be challenging for a lab 

instructor because different student groups in a class 

will often be doing different experiments, making it 

difficult to take a consistent class approach to data 

analysis. 

As in learning any topic, students should have 

opportunities to practice a method multiple times, in 

different contexts.  The class should not introduce too 

many new methods or new quantities in one class; 

these must be sufficiently experienced before building 

on them to higher concepts or moving to a different 

strand. 

There are usually more than one choice of analysis 

method to extract information from experimental data, 

and the best method for research may not be the best 

method for student learning at a particular point in their 

education.  With some planning, methods can be 

chosen for a sequence of experiments to build a logical 

sequence in which data analysis methods are 

introduced.  The sequence of experiments can itself be 

configured to support such a logical sequence.  

Providing opportunities for students to repeatedly 

apply earlier methods in new contexts is also a key to 

learning that will last. 

SEQUENCE OF DATA ANALYSIS 

METHODS 

In our Modern Physics Lab course, we introduce 

major data analysis methods in this approximate 

sequence: measuring a single quantity (error 

estimation, error propagation, combining errors from 

different sources); probability distributions and 

statistical methods (Gaussian and rectangular 

distributions, mean and standard error, weighted 

average); measuring and modeling a functionally 

dependent quantity
1
 (fitting data to a model, residuals, 

least-squares criterion); and further probability distri-

butions (Poisson, Gaussian, exponential). Below we 

describe how these are implemented.   

We have not made any attempt to quantitatively 

assess student learning gains in comparison to other 

approaches.  Our experience is that it is more straight-

forward to teach data analysis using this sequence 

compared to what we did before, and there seems to be 

less confusion among the students about how and when 

to make use of the various analysis methods.  

 

Measuring a Single Quantity 

Measuring a single quantity is a logical and simple 

place to begin, but measuring a primary quantity (for 

example, a distance measured with a meter stick or a 

weight measured with a scale) is not very interesting.  

In the first session of our course, students measure the 

speed of electromagnetic pulses in coaxial cable, 
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calculated from the two primary measurements of 

cable length and travel time.  The apparatus (high 

speed oscilloscope and coaxial cables) and related 

concepts (EM waves traveling in a inductive capacitive 

medium) are usually quite novel to the students, yet the 

mathematics are simple enough to allow them to 

readily take in the methods of error propagation.   

Specifically, they measure the time ( T ) for a pulse 

to travel to the end and back of a cable of measured 

length ( L ), from which, the speed is determined as 

2 /v L T= .  Estimated errors in the primary quantities 

we designate by Lα  and Tα .  Error propagation (using 

the usual linearization approximation, for small errors), 

produces uncertainties L dv v
v L LdL L

α α α= =  and 

T dv v
v T TdT T

α α α= = , where 
L
vα  and 

T
vα  are the partial 

uncertainties due to L  and T , respectively.  They 

compute the total uncertainty as ( ) ( )
2 2

L T
v v vα α α= + . 

The size of the fractional errors from distance 

( / )L Lα  and time ( / )T Tα  are quite different, 

providing an example of the relative importance of 

error contributions. Note that these methods do not 

require knowledge of probability distributions, except 

for the combining of errors in quadrature, which is 

strictly justified only for errors from Gaussian 

distributions.  

This learning is reinforced the following week, by 

applying the same methods in a slightly different 

experiment, measuring the speed of light.  A pulse of 

light from a diode laser is reflected from a mirror at 

near-normal incidence, back to a photodetector.  The 

mathematics is nearly identical to the previous week, 

but incorporates subtraction out of a reference point 

0(L , 0T ), which eliminates poorly known quantities 

such as the response times of the laser and 

photodetector. Because the speed of light is a known 

quantity, students can determine the actual error in 

their measurement and compare to their error 

estimates.  

Investigation of multiple trials is also done with this 

data; this is discussed below.   

Probability Distributions and  

Statistical Measures 

During the second lab session (Speed of Light 

experiment), probability distributions are introduced, 

first as a tool for quantifying what we mean by an error 

estimate of a primary measurement.  For example, the 

instrumental resolution of time measurement for our 

digital oscilloscopes is 0.4 ns, representing an 

uncertainty with a rectangular probability distribution 

0.2± ns.  On the other hand, if the reflected laser signal 

is weak, repeated measurements will vary, fluctuating 

such that "much of the time" they fall within (for a 

given case) 1± ns, which we model as a Gaussian 

distribution with 1σ = ns, and equate "much of the 

time" with 68%.  This is also a time that the GUM 

(Guide to the expression of uncertainty in 

measurement
2
) concepts of Type A and Type B 

uncertainties can be introduced, if desired.   

Repeated measurements of a single quantity allow 

one to apply basic statistical measures such as mean, 

standard deviation, and standard error.  For the speed 

of light lab, the repeated measurements can be a set of 

trials, one from each group. (This is useful only if the 

class is large.)  Alternatively, each group can produce a 

set of trials taken at different distances.  A useful 

aspect of this is that it makes clear (after use of error 

propagation) the value of longer distances and times 

for improving the precision of the measurement.  For 

example, Fig. 1 shows the decrease in uncertainty 

(error bars) with increase in travel distance, a result 

primarily due to decrease in the relative uncertainty in 

time measurements. 

 

Figure 1: Repeated trials of a single quantity measurement.  

Here, the speed of light measurements show improved 

precision at longer distances.  

 

A disadvantage of using trials at different distances 

is the one cannot properly combine them using a 

simple mean.  Instead, we have the students compute a 

weighted mean from their values and a weighted 

standard error.  

Curve Fitting 

We progress from single quantities to functional 

relations, that is to say, curve fitting.  While there are 

well-known matrix methods
3
 and readily available 

computer tools to automatically fit functions to data, 

we avoid these, at least initially, because we want to 
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build student understanding of the principles 

underlying the method.  First we emphasize the idea 

that there is a mathematical model, in most cases 

derived from other physical laws, that we expect 

should describe the data.  Next we have the students 

graph the model equation (having adjustable 

parameters) on the same plot as their data points, and 

observe how the model changes as parameters are 

adjusted.  We use Excel, but this can also be done in 

Mathematica, Origin, or other math or data graphing 

software.  They optimize the model first by eye.  Then 

we have them plot the residuals (deviations between 

the model and data), which aids their parameter 

optimization and can also provide insight into the 

random or systematic character of deviations.   

Only then do we introduce the least-squares 

criterion.  The sum of the squared residuals ( SSR ) is 

readily calculated in the spreadsheet, and students 

improve their fit by further manually adjusting the 

parameters to minimize the SSR .   We later show them 

computational tools to do this more quickly, such as 

the Solver optimization tool in Excel.  They compare 

their optimal results to other quick tools, for example 

creating a Trendline, which is of course, based on the 

same least-squares criterion.  

In our most recent incarnation of our lab course, 

students first learn curve-fitting by applying a straight 

line model to calibration of a diffraction grating, using 

known Hg wavelengths (for a Balmer spectroscopy 

lab).  With the expected model sinm dλ θ= , we have 

them plot mλ  versus sinθ , with one adjustable 

parameter, d . 

This same general approach for curve fitting is 

applied later in the course, at least twice, usually to 

models that are not a straight line.  Examples of non-

straight lines include λ  vs. n  for Balmer wavelengths, 

f  vs. L  for resonant frequencies of hollow tubes, and 

R  vs. t  for activity of a short-lived radioactive 

isotope.   

Estimating uncertainties in the model parameters 

we do only roughly, having students observing the fit 

and the residuals, to determine how far a parameter can 

be changed before the fit is no longer good, as judged 

by eye.  More quantitative measures require more time 

than is available in a one-semester course, and require 

better knowledge of data point uncertainties than we 

usually have.  

More on Probability Distributions 

Students delve more deeply into probability 

distributions primarily in our nuclear rate experiments, 

for which the Poisson distribution describes chances of 

specific counts being obtained.  Using computer count 

acquisition, they can in reasonable time obtain 

sufficient data to make a good histogram, to which 

theory can be compared.  This is done both for a small 

average number of counts ( 1N ≈ ) and a large number 

of counts ( 300N ≈  ).  In both cases they examine the 

expected relation Nσ = .  For the larger count 

situation, the Poisson distribution closely approaches a 

Gaussian, and this is used to explore the character of 

1σ  and 2σ  confidence ranges. 

ADAPTING METHODS AND 

EXPERIMENTS 

Building a coherent sequence of data analysis steps 

into a laboratory course often requires flexibility in 

either application of methods to a particular experiment 

and/or flexibility in ordering of experiments.  For 

example, the data taken for the speed of light lab might 

more preferably have been analyzed by fitting the 

distance to a straight-line model as a function of time, 

with the slope (speed) as an adjustable parameter.  This 

would be a cleaner scientific approach, because the 

detector and laser response times affect the offset but 

not the slope.  However, we choose (in week two of 

our course) to arrange the data as multiple 

measurements of a single quantity, so that students can 

more fully explore this more basic approach.  

Extracting the speed from the slope can be done later 

in the course, if one wishes, and indeed we have 

sometimes used re-analysis of the speed of light data as 

the students' first introduction to curve-fitting.    

Another example of adapting approaches is that we 

have sometimes moved part of our nuclear rate 

experiments to the first or second week of the 

semester, focused simply on the variability of repeated 

measurements of the counts in a fixed time, in order to 

explore the meaning of a probability distribution.  No 

detailed knowledge of the radiation detector or decay 

processes is needed.    

Often the lab instructor must choose experiments 

subject to significant constraints imposed by limited 

quantities of apparatus (so that several experiments are 

underway at the same time, by different student 

groups) or those imposed by a parallel lecture course 

(for example, putting gamma spectroscopy or particle 

experiments to the end of the semester because these 

topics are covered late in a modern physics lecture 

course).  We have shown here examples of how one 

can adapt the analysis methods chosen for each 

experiment so as to provide a coherent, sequential 

introduction to some of the most important data 

analysis methods for students in an intermediate 

physics laboratory course.  
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