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Exercise 1:

The equation of motion for a simple, undamped pendulum is

d2θ

dt2
+

g

l
sin θ = 0

Taking θ1(t) and θ2(t) as solutions to that equation, what can we say about the possible
solution φ(t) = θ1(t) + θ2(t)?

d2φ

dt2
=

d2

dt2
(θ1 + θ2)

=
d2θ1

dt2
+

d2θ2

dt2

= −g

l
sin θ1 − g

l
sin θ2

6= −g

l
sin(φ)

Thus φ is not a solution and therefore the simple pendulum is not a linear system. However,
in the small angle limit, where θ1, θ2 and φ are all much less than 1, the approximation
sin θ = θ is accurate for all three angles and then gives

d2φ

dt2
= −g

l
sin θ1 − g

l
sin θ2

= −g

l
(θ1 + θ2)

= −g

l
φ (1)

And thus in this case, φ = θ1 + θ2 is a solution.

Exercise 2:

(a) Any difference in the tension on the two sides of the string wrapped around the pulley
will leads to a torque on the disk. The string tension on each side is proportional to the
elongation of the spring on that side. The setup ensures both springs are always stretched



and pulling on their end of the string and that the two tensions are equal (and let’s say
given by T0) when d = 0 and θ = 0. In this configuration, each string’s length is L0 and a
change ∆L in that length makes the tension change from T0 to T0 + k∆L where k is the
spring constant.

As the disk/pulley assembly rotates through an angle θ, the string moves through a
distance rθ, where r is the pulley radius. For a given θ, the end attached to the “drive”
spring (the spring attached to the drive shaft) moves up by rθ (down if θ is negative) and
the end attached to the “fixed” spring (the spring fixed to the cross rod) moves down rθ
(up if θ is negative).

The displacement of the bottom end of the drive spring is defined as d and is relative to
its position when the length of the drive shaft is zero (A = 0). As the motor rotates with
a non-zero A, this end of the drive spring moves up or down by the amount d (positive d
is upward movement and shortens the drive spring).

Thus, the drive spring’s length change is rθ− d and the string tension on the drive side
becomes Td = T0+k(rθ−d). The fixed spring’s length change is −rθ and the string tension
on the fixed side becomes Tf = T0 − krθ. On both sides, the string pulls at right angles to
the rotation axis with a moment arm given by the pulley radius, r. Thus the torque due
to the string (with positive torques tending to cause accelerations in the positive direction
for θ) would be given by τs = r(Tf − Td); rTf is the torque from the string pulling on the
fixed spring side and −rTd is the torque from the string pulling on the drive spring side.

Because the disk is symmetric, its center of mass is on the axis of rotation and it causes
no torque. The pendulum mass m is off-axis by an amount l and is directly over the axis
when θ = 0. It has a downward gravitational force mg acting on it and for non-zero θ, this
force has a lever arm (perpendicular distance to the axis) given by l sin θ. The torque τg

due to gravity is then mgl sin θ and is correctly signed; positive when sin θ is positive and
negative when sin θ is negative.

The net torque from these two sources is thus

τc = τs + τg

= r(Tf − Td) + mgl sin θ

= r [(T0 − krθ)− (T0 + krθ − kd)] + mgl sin θ

= −2kr2θ + krd + mgl sin θ (2)

(b) Just as the Fx = −dV/dx is the force associated with a conservative potential V ,
τc = −dV/dθ is the torque due to a conservative potential V . Thus we should find

V = −
∫

τc(d = 0) dθ



=
∫ (

2kr2θ −mgl sin θ
)

dθ

= kr2θ2 + mgl cos θ

The integration constant can be taken as zero as any overall constant in the potential will
have no effect on the motion.

(c) Minima and maxima in the potential are where its derivative is zero, i,.e., where the
net torque is zero.

0 =
dV

dθ

∣∣∣∣∣
θ=θe

=
d

dθ

(
kr2θ2 + mgl cos θ

)∣∣∣∣∣
θ=θe

= 2kr2θe −mgl sin θe

This has a simple solution θe = 0, but it may have additional solutions with θe 6= 0 where

sin θe

θe

=
2kr2

mgl

Note that the left side has a maximum value of unity when θe = 0. So the right side must
be less than unity to have any additional solutions beyond θe = 0.

Exercise 3:

(a) The main equation is that the net torque is the moment of inertia times the angular
acceleration. The net torque is that due to conservative forces τc given by Eq. 2 and the
torque due to magnetic damping and axle friction,

τf = −b ω − b′sgn(ω)

That is,

I
d2θ

dt2
= τc + τf

= −2kr2θ + krd + mgl sin θ − b ω − b′sgn(ω) (3)

The definition of the angular velocity ω is

dθ

dt
= ω (4)



Note that the drive displacement d is given by

d = A cos φ (5)

where φ is the angle of the motor shaft (assuming straight up is φ = 0). Then if the motor
rotates at a constant angular velocity Ω, the drive shaft angle is given by φ = Ωt (assuming
φ = 0 at t = 0) and gives

dφ

dt
= Ω

Using Eqs. 4 and 5 in Eq. 3 and dividing through by the moment of inertia gives

dω

dt
= −2kr2

I
θ +

krA

I
cos φ +

mgl

I
sin θ − b

I
ω − b′

I
sgn(ω) (6)

or in the dot notation:

θ̇ = ω

ω̇ = −κθ + µ sin θ + ε cos φ− Γω − Γ′sgn(ω)

φ̇ = Ω

where

κ = 2kr2/I

µ = mgl/I

ε = krA/I

Γ = b/I

Γ′ = b′/I

Exercise 4:

(a) The equation for the potential V is

V = kr2θ2 + mgl cos θ

Expanding any function f(x) about some point x0 via a Taylor expansion is f(x) = f(x0)+
f ′(x0)(x− x0) + 1

2
f ′′(x0)(x− x0)

2 + ... Here we expand V (θ) about θ0 = ±θe keeping only



up to the quadratic term. We can drop the linear term because the V ′(θ0) = 0 for θ0 = ±θe

because the definition of θe is precisely where that derivative vanishes. Thus

V (θ) = V (θ0) +
1

2

d2V (θ)

dθ2

∣∣∣∣∣
θ=θ0

(θ − θ0)
2

= kr2θ2
0 + mgl cos θ0 +

1

2
(2kr2 −mgl cos θ0)(θ − θ0)

2

= kr2θ2
e + mgl cos θe +

1

2
(2kr2 −mgl cos θe)(θ − θ0)

2

where θ0 = ±θe is substituted in those places where the result is independent of the sign
of θ0.

(b) The torque due to the conservative forces (from the spring and gravity) is just

τc = −dV

dθ
= −(2kr2 −mgl cos θe)(θ − θ0)

The net torque including the magnetic damping τf = −b ω (but neglecting axle friction)
and including the torque due to the drive τd = krd = kA cos φ = krA cos Ωt

τ = −(2kr2 −mgl cos θe)(θ − θ0) + krA cos Ωt− b ω

Noting that θ′ = θ − θ0 and thus ω = dθ/dt = dθ′/dt and setting the angular acceleration
θ̈′ equal to the net torque divided by the moment of inertia gives:

θ̈′ = −1

I

[
(2kr2 −mgl cos θe)θ

′ + krA cos Ωt− bθ̇′
]

= −(κ− µ cos θe)θ
′ + ε cos Ωt− Γθ̇′

Rearranging and setting Ω2
0 = κ− µ cos θe gives

θ̈′ + Γθ̇′ + Ω2
0θ
′ = ε cos Ωt

Exercise 5:

The equation of motion is given as

θ̈ + Γθ̇ + Ω2
0θ = 0 (7)



and we are to check the validity of the solution

θ = Ce−Γt/2 cos(Ω′t + δ) (8)

One could simply show this solution satisfies the differential equation. Here, we will assume
a solution of the form

θ = Ce−γt cos(Ω′t + δ)

and see what conditions arise on the constants C, γ, Ω′ and δ appearing in it. Its first
derivative is

θ̇ = Ce−γt (−γ cos(Ω′t + δ)− Ω′ sin(Ω′t + δ))

Its second derivative is

θ̈ = Ce−γt
(
γ2 cos(Ω′t + δ) + γΩ′ sin(Ω′ + δ) + γΩ′ sin(Ω′t + δ)− Ω′2 cos(Ω′t + δ)

)

= Ce−γt
(
2γΩ′ sin(Ω′t + δ) +

(
γ2 − Ω′2) cos(Ω′t + δ)

)

Putting these last three equations into the equation of motion gives

Ce−γt
(
2γΩ′ sin(Ω′t + δ) +

(
γ2 − Ω′2) cos(Ω′t + δ)

)

+ Γ
(
Ce−γt (−γ cos(Ω′t + δ)− Ω′ sin(Ω′t + δ))

)

+ Ω2
0 Ce−γt cos(Ω′t + δ) = 0

Canceling the Ceγt and collecting terms gives

Ω′ (2γ − Γ) sin(Ω′t + δ) +
(
γ2 − Ω′2 − γΓ + Ω2

0

)
cos(Ω′t + δ) = 0

As this must hold for all values of t, both coefficients multiplying the oscillating factors
sin(Ω′t + δ) and cos(Ω′t + δ) must be zero.

0 = Ω′ (2γ − Γ)

0 =
(
γ2 − Ω′2 − γΓ + Ω2

0

)

The first of these two equations gives

γ =
Γ

2



And using this in the second equation gives

0 =
(

Γ

2

)2

− Ω′2 − Γ2

2
+ Ω2

0

or

Ω′2 = Ω2
0 −

Γ2

4
(9)

Thus giving Eq. 8 as a solution (with Eq. 9 for the free oscillation frequency Ω′). The
differential equation does not give any conditions on the amplitude factor C or on the
phase constant δ which are determined by initial conditions on the angle θ(0) and the
angular velocity ω(0) at t = 0

(b) The general solution to the driven harmonic oscillator equation

θ̈ + Γθ̇ + Ω2
0θ = ε cos Ωt (10)

can be expressed

θ = θp + θh (11)

where θh is the (homogeneous) solution to the undriven system and given by Eq. 8 with
Eq. 9 and θp is any particular solution to Eq. 10. To see this, try Eq. 11 in Eq. 10

d2

dt2
(θp + θh) + Γ

d

dt
(θp + θh) + Ω2

0(θp + θh) = ε cos Ωt

θ̈p + Γθ̇p + Ω2
0θp + θ̈h + Γθ̇h + Ω2

0θh = ε cos Ωt

θ̈p + Γθ̇p + Ω2
0θp = ε cos Ωt

where in getting to the last line the fact that θh satisfies Eq. 7 was used. We will try as
the particular solution:

θp = C ′ cos(Ωt + δ′) (12)

and see what conditions arise on C ′ and δ′. Notice the form of Eq. 12. It is constant am-
plitude oscillations at the drive frequency Ω and is offset in phase from the drive waveform
ε cos Ωt by the amount δ′. The derivative of Eq. 12 is θ̇p = −ΩC ′ sin(Ωt+δ′) and the second
derivative is θ̈p = −Ω2C ′ cos(Ωt + δ′). Using these in Eq. 10 gives



θ̈p + Γθ̇p + Ω2
0θp = ε cos Ωt

−Ω2C ′ cos(Ωt + δ′)− ΓΩC ′ sin(Ωt + δ′) + Ω2
0C

′ cos(Ωt + δ′) = ε cos Ωt

(Ω2
0 − Ω2) cos(Ωt + δ′)− ΓΩ sin(Ωt + δ′) =

ε

C ′ cos Ωt

(Ω2
0 − Ω2) (cos Ωt cos δ′ − sin Ωt sin δ′)− ΓΩ (sin Ωt cos δ′ + cos Ωt sin δ′) =

ε

C ′ cos Ωt
(
(Ω2

0 − Ω2) cos δ′ − ΓΩ sin δ′ − ε

C ′

)
cos Ωt−

(
(Ω2

0 − Ω2) sin δ′ + ΓΩ cos δ′
)

sin Ωt = 0 (13)

This equation must be satisfied for all t and thus the coefficients of the sin Ωt and cos Ωt
oscillatory terms must both be zero. For the sin Ωt term this gives:

(Ω2
0 − Ω2) sin δ′ + ΓΩ cos δ′ = 0

or

tan δ′ =
−ΓΩ

Ω2
0 − Ω2

With sin2 δ′ + cos2 δ′ = 1, this gives

sin δ′ =
−ΓΩ√

(Ω2
0 − Ω2)2 + Γ2Ω2

cos δ′ =
Ω2

0 − Ω2

√
(Ω2

0 − Ω2)
2
+ Γ2Ω2

Using these last two expresions in the cos Ωt term of Eq. 13 gives

(Ω2
0 − Ω2)

Ω2
0 − Ω2

√
(Ω2

0 − Ω2)
2
+ Γ2Ω2

− ΓΩ
−ΓΩ√

(Ω2
0 − Ω2)

2
+ Γ2Ω2

=
ε

C ′

(Ω2
0 − Ω2)

2
+ Γ2Ω2

√
(Ω2

0 − Ω2)
2
+ Γ2Ω2

=
ε

C ′
√

(Ω2
0 − Ω2)

2
+ Γ2Ω2 =

ε

C ′

or

C =
ε√

(Ω2
0 − Ω2)

2
+ Γ2Ω2



Alternate solution using phasors

Both parts (a) and (b) are much more easily solved using phasors. Euler’s equation is

eiφ = cos φ + i sin φ

With z = x + i y representing a general complex quantity, <{z} = x is the function that
takes its real part and ={z} = y takes its imaginary part.

(a) These relations are used, for example, to express a trial solution for part (a) in the form

θ = <
{
Ceωt

}
(14)

where both C and ω are now complex quantities whose values are to be determined.
Substituting the trial solution into Eq. 7 gives:

[
d2

dt2
+ Γ

d

dt
+ Ω2

0

]
<

{
Ceωt

}
= 0

<
{[

d2

dt2
+ Γ

d

dt
+ Ω2

0

]
Ceωt

}
= 0

(15)

Taking the real part can be moved to the front because the differential equation is all real.
Now evaluating the derivatives is very simple and leads to

<
{[

ω2 + Γω + Ω2
0

]
Ceωt

}
= 0

Because the term Ceωt has oscillating real and imaginary components, the expression above
can only be zero for all times if the factor in square brackets is identically zero for both its
real and imaginary parts. This gives an algebraic equation (the quadratic formula)

ω2 + Γω + Ω2
0 = 0

which has the solution

ω = −Γ

2
±

√
Γ2/4− Ω2

0

= −Γ

2
± i

√
Ω2

0 − Γ2/4

= −Γ

2
± iΩ′

0



where

Ω′
0 =

√
Ω2

0 −
Γ2

4

Which when plugged back into the solution (with the constant C expressed in the form
Aeiδ

θ = <
{
Ceωt

}

= <
{
Aeiδe−(Γ/2±iΩ′0)t

}

= <
{
Ae−Γt/2±i(Ω′0t∓δ)

}

= Ae−Γt/2<
{
e±i(Ω′0t∓δ)

}

= Ae−Γt/2 cos(Ω′
0t + δ)

(b) Trying the following particular solution

θp = <
{
CeiΩt

}

in the driven oscillator equation gives
[

d2

dt2
+ Γ

d

dt
+ Ω2

0

]
θp = ε cos Ωt

[
d2

dt2
+ Γ

d

dt
+ Ω2

0

]
<

{
CeiΩt

}
= ε<

{
eiΩt

}

<
{[

d2

dt2
+ Γ

d

dt
+ Ω2

0

]
CeiΩt

}
= ε<

{
eiΩt

}

<
{[

d2

dt2
+ Γ

d

dt
+ Ω2

0

]
CeiΩt = εeiΩt

}

In the third line, the real part can be pulled out front because the differentiation operations
are all real and in the fourth line the real part is pulled around the whole equation because
if that equation is satisfied, both the real and imaginary parts would be satisfied. Solving
that equation will actually be straightforward.

[
d2

dt2
+ Γ

d

dt
+ Ω2

0

]
CeiΩt = εeiΩt

[
−Ω2 + iΓΩ + Ω2

0

]
CeiΩt = εeiΩt

[
Ω2 − Ω2 + iΓΩ

]
C = ε



Where in the last line, the eiΩt was canceled from both sides. Now solving for C proceeds
as follows

C =
ε

Ω2
0 − Ω2 + iΓΩ

(16)

=
ε

Ω2
0 − Ω2 + iΓΩ

· Ω2
0 − Ω2 − iΓΩ

Ω2
0 − Ω2 − iΓΩ

= ε
Ω2

0 − Ω2 − iΓΩ

(Ω2
0 − Ω2)

2
+ Γ2Ω2

Now the denominator is all real. To express C = C ′eiδ′ , one uses tan δ′ = =C/<C. Since
it is a ratio, the denominator drops out leaving

tan δ′ =
−ΓΩ

Ω2
0 − Ω2

The magnitude C ′ is most easily determined from Eq. 16 above. It is simply ε (a real)
divided by the magnitude of the denominator. The magnitude of a complex z = x + i y is
simply

√
x2 + y2 giving

C ′ =
ε√

(Ω2
0 − Ω2)

2
+ Γ2Ω2

Selected Comprehension Questions

Comprehension Question 1:

For undamped undriven harmonic oscillations θ executes simple harmonic motion

θ = A cos Ω0t

where the phase constant has been chosen to be zero. With this time dependence for θ,
the angular velocity becomes

ω =
dθ

dt
= −AΩ0 sin Ω0t

to see what a phase plot would look like we can note that sin2 Ω0t + cos2 Ω0t = 1 for all t
or

θ2

A2
+

ω2

A2Ω2
0

= 1

(17)



which is the equation of an ellipse with the horizontal (θ) radius equal to A and the vertical
(ω) radius equal to AΩ0. Thus to reshape the ellipse into a circle one only needs to scale
the lengths accordingly. With a given angle plotted along the x-axis according to any
scale factor α (in units of say centimeters per radian), the y-axis scale factor for plotting
angular velocities would have to be α/Ω0 (in units of centimeters per rad/s). A phase
point travels clockwise around the ellipse on a normally arrange coordinate system (with
increasing values plotted upward and to the right). Consider a point at the top of the
ellipse where θ = 0 and ω > 0. Since ω = dθ/dt is positive, θ must be increasing and
moving rightward, i.e., clockwise. The time to go around the ellipse is determined by the
period of the oscillations T = 2π/Ω0, since Ω0 is the angular frequency of the oscillations.
The amplitude A of the angular oscillations depends on the initial conditions. The sketch
should show two ellipses with the same aspect ratio and centers, but with different sizes.

Comprehension Question 2:

Damping causes an elliptical trajectory to decay spirally into the center. The decay can
be exponential with only magnetic damping to a something a bit more linear in the case
of axle friction. The sketches should show two spirals decaying to the origin, where all
trajectories will ultimately terminate.

Comprehension Question 3:

(a) Keep in mind the definition requires the slope od the log N vs. log M graph be taken in
the large M limit, where the box size has been made infinitesimally small. If the attractor
is a finite number of points in three dimensional phase space, then as the box size decreases,
at some point each such point will be in one box only. Any further decrease in the box size
will leave the number of boxes occupied unchanged and the slope of the log N vs. log M
graph will be zero. If the attractor is any finite number of lines in phase space then the
number of boxes occupied will increase as the box size decreases. Imagine the boxes have
been made small enough that for any box containing any part of any line inside it is, the
line is affectively straight through the box. Cutting the box size in half, there would now
be twice as many boxes occupied. A direct proportionality like this results in the log N
vs. log M graph having a slope of 1. If the attractor is any finite number of areas in phase
space, the number of boxes occupied will again increase as the box size decreases. Imagine
the boxes have been made small enough that for any box containing any part of any area
inside it is, the area is affectively flat through the box. Cutting the box size in half, there
would now be four times as many boxes occupied. A quadratic proportionality like this
results in the log N vs. log M graph having a slope of 2. If the attractor is any finite number



of volumes in phase space, the number of boxes occupied will again increase as the box size
decreases. Imagine the boxes have been made small enough that for any box containing
any part of any volume, the volume completely fills the box. Cutting the box size in half,
there would now be eight boxes occupied. A cubic proportionality like this results in the
log N vs. log M graph having a slope of 3.

(b) When there are two or more such objects in phase space, as the boxes get smaller and
smaller, sooner or later the object with the largest dimensionality will occupy the largest
number of boxes (by far) and will dominate the behavior of the log N vs. log M graph.

Comprehension Question 4:

The derivation proceeds as follows.

α = −Γω − Γ′sgn ω − κ(θm + δθ − θ0) + µ sin(θm + δθ) + ε cos(φm + δφ)

= −Γω − Γ′sgn ω − κ(θm + δθ − θ0) + µ(sin θm cos δθ + cos θm sin δθ)

+ε(cos φm cos δφ− sin φm sin δφ)

= −k(δθ − θ0)− Γω − Γ′sgn ω − κθm + µ cos δθ sin θm + µ sin δθ cos θm

+ε cos δφ cos φm − ε sin δφ sin φm


