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TABLE I. Top: Summary of the relationships between ω0, Q0, ω1, Q1 and the complex relative permittivity. Bottom: Summary
of the relationships between ω0, Q0, ω2, Q2 and the complex relative permeability.

magnetic particles present to determine ω0 andQ0. Next,
the resonance would be remeasured with the magnetic
particles suspended in the liquid to find ω2 and Q2. Fi-
nally, µ′ and µ′′ could then be determined using the ap-
propriate relationships given in Table I.

V. SUMMARY

Methods for determining the complex relative permit-
tivities and permeabilities of materials using a SRR have

been described. In general, the SRR signal response is
non-Lorentzian. However, in a wide variety of cases the
signal is very accurately approximated by a Lorentzian.
For dielectric materials, the limiting cases ofQ−1

0 ≫ ε′′/ε′

and Q−1
0 ≪ ε′′/ε′ as well as the general case Q−1

0 ∼ ε′′/ε′

were all considered. Teflon, 2-propanol, and water were
used as examples of these three cases and it was shown
how measurements of the in-air and in-liquid resonant
frequencies and quality factors can be used to experimen-
tally determine ε′ and ε′′. An equivalent analysis for the
case of a SRR submerged in a ferromagnetic suspension
was also presented.
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