Permittivity	ω_1	Q_1	$arepsilon'(\omega_1)$	$arepsilon''(\omega_1)$
Q_0^{-1} dominant	$\frac{\omega_0}{\sqrt{\varepsilon'}}$	$\frac{Q_0}{(\varepsilon')^{1/4}}$	$\left(\frac{\omega_0}{\omega_1}\right)^2$ and $\left(\frac{Q_0}{Q_1}\right)^4$	-
ε'' dominant	$\omega_0 rac{\sqrt{arepsilon'}}{ arepsilon_{ m r} }$	$rac{arepsilon'}{arepsilon''}$	$\frac{\left(Q_1\frac{\omega_0}{\omega_1}\right)^2}{1+Q_1^2}$	$\frac{Q_1 \left(\frac{\omega_0}{\omega_1}\right)^2}{1 + Q_1^2}$
general	$\omega_0 rac{\sqrt{arepsilon'}}{ arepsilon_{ ext{r}} }$	$\left[\frac{1}{Q_0} \left(\frac{ \varepsilon_{\rm r} ^2}{\varepsilon'}\right)^{1/4} + \frac{\varepsilon''}{\varepsilon'}\right]^{-1}$	$\frac{\left(\frac{\omega_0}{\omega_1}\right)^2}{1 + \left[\frac{1}{Q_1} - \frac{1}{Q_0} \left(\frac{\omega_0}{\omega_1}\right)^{1/2}\right]}$	$\frac{\left(\frac{\omega_0}{\omega_1}\right)^2 \left[\frac{1}{Q_1} - \frac{1}{Q_0} \left(\frac{\omega_0}{\omega_1}\right)^{1/2}\right]}{1 + \left[\frac{1}{Q_1} - \frac{1}{Q_0} \left(\frac{\omega_0}{\omega_1}\right)^{1/2}\right]}$
Permeability	ω_2	Q_2	$\mu'(\omega_2)$	$\mu''(\omega_2)$
Q_0^{-1} dominant	$rac{\omega_0}{\sqrt{\mu'}}$	$Q_0 \left(\mu' ight)^{3/4}$	$\left(\frac{\omega_0}{\omega_2}\right)^2$ and $\left(\frac{Q_2}{Q_0}\right)^{4/3}$	-
μ'' dominant	$\frac{\omega_0}{\sqrt{\mu'}}$	$\frac{\mu'}{\mu''}$	$\left(\frac{\omega_0}{\omega_2}\right)^2$	$rac{1}{Q_2} \left(rac{\omega_0}{\omega_2} ight)^2$
general	$\frac{\omega_0}{\sqrt{\mu'}}$	$\left[\frac{1}{Q_0} \frac{1}{(\mu')^{3/4}} + \frac{\mu''}{\mu'}\right]^{-1}$	$\left(rac{\omega_0}{\omega_2} ight)^2$	$\left(\frac{\omega_0}{\omega_2}\right)^2 \left[\frac{1}{Q_2} - \frac{1}{Q_0} \left(\frac{\omega_2}{\omega_0}\right)^{3/2}\right]$

TABLE I. Top: Summary of the relationships between ω_0 , Q_0 , ω_1 , Q_1 and the complex relative permittivity. Bottom: Summary of the relationships between ω_0 , Q_0 , ω_2 , Q_2 and the complex relative permeability.

magnetic particles present to determine ω_0 and Q_0 . Next, the resonance would be remeasured with the magnetic particles suspended in the liquid to find ω_2 and Q_2 . Finally, μ' and μ'' could then be determined using the appropriate relationships given in Table I.

V. SUMMARY

Methods for determining the complex relative permittivities and permeabilities of materials using a SRR have been described. In general, the SRR signal response is non-Lorentzian. However, in a wide variety of cases the signal is very accurately approximated by a Lorentzian. For dielectric materials, the limiting cases of $Q_0^{-1} \gg \varepsilon''/\varepsilon'$ and $Q_0^{-1} \ll \varepsilon''/\varepsilon'$ as well as the general case $Q_0^{-1} \sim \varepsilon''/\varepsilon'$ were all considered. Teflon, 2-propanol, and water were used as examples of these three cases and it was shown how measurements of the in-air and in-liquid resonant frequencies and quality factors can be used to experimentally determine ε' and ε'' . An equivalent analysis for the case of a SRR submerged in a ferromagnetic suspension was also presented.

^{*} Jake.Bobowski@ubc.ca; https://people.ok.ubc.ca/jbobowsk

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184–4187 (2000).

² D. A. Bonn, D. C. Morgan, and W. N. Hardy, Rev. Sci. Instrum. **62**, 1819–1823 (1991).

W. N. Hardy, D. A. Bonn, D. C. Morgan, R. Liang, and K. Zhang, Phys. Rev. Lett. 70, 3999–4002 (1993).

⁴ M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, Science 326, 550–553 (2009).

⁵ J. S. Bobowski, Am. J. Phys. **81**, 899–906 (2013).

⁶ M. C. Ricci and S. M. Anlage, Appl. Phys. Lett. 88, 264102 (2006).

W. N. Hardy and L. A. Whitehead, Rev. Sci. Instrum. 52, 213–216 (1981).

⁸ The complex permittivity has been modelled using the function $\varepsilon_{\rm r} = \varepsilon_{\infty} + (\varepsilon_{\rm s} - \varepsilon_{\infty})/(1 + j\omega\tau)$.

⁹ F. Buckley and A. A. Marriott, Tables of Dielectric Dispersion Data for Pure Liquids and Dilute Solutions (National Bureau of Standards Circ. No. 589, 1958).

¹⁰ R. Buchner, J. Barthel, and J. Stauber, Chem. Phys. Lett. **306**, 57–63 (1999).