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Abstract:  An entangled state of a two-particle system is a quantum state that cannot be separated—it cannot be written 
as the product of states of the individual particles. One way to tell if a system is entangled is to use it to violate a Bell 
inequality (such as the Clauser-Horne-Shimony-Holt, CHSH, inequality), because entanglement is necessary to violate 
these inequalities. However, there are other, more efficient measurements that determine whether or not a system is 
entangled; an operator that corresponds to such a measurement is referred to as an entanglement witness. We present the 
theory of witness operators, and an undergraduate experiment that measures an entanglement witness for the joint 
polarization state of two photons. We are able to produce states for which the expectation value of the witness operator is 
entangled by more than 160 standard deviations. 
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INTRODUCTION 
 
Entanglement is a (perhaps the) feature that 

distinguishes quantum mechanics from classical 
mechanics. Entanglement is necessary for a diverse 
range of uniquely quantum mechanical effects such as 
quantum cryptography, quantum teleportation and 
quantum computing.1  

Mathematically, entangled states are those quantum 
states that cannot be written as the product of the states 
of the individual particles. Thus, if ent  represents 

an entangled state of a bipartite system, and A  and 

B  are the states of the individual particles, then 
 
 ent A B      , (1) 

 
where   represents the direct product.  

In Eq. (1) ent  is an entangled pure state. It has 
been shown that for every bipartite pure-state, there 
exists a Bell inequality that is violated;2,3 this means 
that there exists, at least in principle, a method to 
experimentally detect that entanglement.  

However, real experimental systems never exist in 
pure states. One must assume that the state of an 
experiment will yield a mixed state that must be 
described by density operator ̂ .4 A mixed state is 
separable, and hence not entangled, if it can be written 
as a weighted sum of product states: 

 

 ˆ ˆ ˆsep i Ai Bi
i

p     , (2)  

where the ip ’s are nonnegative real numbers, and the 
normalization condition is that they must sum to 1. 

An observable that is able to detect entanglement is 
referred to as an entanglement witness.5,6 Bell 
inequalities were the first entanglement witnesses, but 
there are other, more efficient, observables that are 
capable of detecting entanglement. For example, the 
minimum number of measurements needed to 
determine a Bell inequality for bipartite qubits (two, 2-
state particles) is four, whereas it is possible to 
construct an entanglement witness for these same 
qubits that requires only three measurements.7 The 
reason Bell inequalities require more measurements is 
because they are capable of ruling out any local-
realistic model, whereas other entanglement witnesses 
assume the validity of quantum mechanics, and merely 
seek to determine whether or not a particular system is 
entangled. 

Experiments with entangled photons have been 
previously performed in undergraduate laboratories.4,8-

12 These experiments include tests of Bell inequalities, 
which prove that the states used in those experiments 
were entangled. However, we know of no previous 
undergraduate experiments that measure the types of 
entanglement witnesses that we describe here. These 
witnesses require only three measurements, not four. 
Furthermore, we demonstrate that our witness 
operators are able to detect entanglement in situations 
where the Clauser-Horne-Shimony-Holt, CHSH, 
inequality,8,9 which is the most commonly used Bell 
inequality, does not.  

A full discussion of mixed-state density operators 
and witness operators is well beyond the scope of this 
article. For a discussion of density operators that is 
accessible to undergraduates, see Ref. [4]. For a more 

                                   edited by Eblen-Zayas, Behringer, and Kozminski; Peer-reviewed, doi:10.1119/bfy.2015.pr.003 
Published by the American Association of Physics Teachers under a Creative Commons Attribution 3.0 license. 
    Further distribution must maintain attribution to the article’s authors, title, proceedings citation, and DOI.

                                                     2015 BFY Proceedings,

12



complete discussion of witness operators, see Refs. [3] 
and [6]. 

THEORY 

Schmidt Decomposition 

Before discussing the general problem of 
identifying entanglement in arbitrary mixed state 
systems, let's first consider entanglement of pure states. 
Suppose that system A has dimension N and system B 
has dimension M. An arbitrary pure state of the joint 
system can be written as 

 

 
.

N M

ij i jA B
i j

N M

ij i j
i j

c

c

    

  

 

 

 (3) 

 
The Schmidt decomposition of   determines two 

new sets of basis vectors i A
a  and i B

b , such that  
 

 
R

i i i
i

a b    . (4) 

 
The number R is called the Schmidt rank of the system, 
and  min ,R N M . This is a simplification, because 
we have gone from a double sum to a single sum. The 
fact that the Schmidt decomposition of   exists is 
proven in Ref. [1]. 

The Schmidt decomposition is useful for several 
reasons. The Schmidt rank of any pure product state is 
1; any pure state with 1R   is entangled. We’ll see 
another use for the Schmidt decomposition below. 

Witness Operators 

An observable Ŵ  is an entanglement witness if 
 
  ˆ ˆ ˆ=Tr 0sepW W    (5) 

 
for all separable states ˆ sep , and  

 
  ˆ ˆ ˆ=Tr 0entW W   (6) 

 
for at least one entangled state ˆ ent .3,5,6 Here Tr() refers 
to the trace of an operator. This means that if one 

measures ˆ 0W  , one knows that the state ̂  is 

entangled. 
There are different ways to construct witness 

operators. The technique that we use is to note that if 
our experimentally produced state is “close enough” 
(in Hilbert space) to a particular entangled pure state 

ent , it will be entangled as well. As such we 
construct the witness operator6 
 
 ˆ ˆˆ ˆ1 1ent ent entW          . (7) 
 
In order to ensure that this operator meets the 
definition of an entanglement witness, the constant   
is chosen to have the minimum value possible such 
that Ŵ  satisfies Eq. (5): 
 
  ˆˆ ˆ= 1 Tr 0ent ent sepW        .  (8) 

 
We thus require   to be given by 
 

  ˆmax Tr .ent ent sep        (9) 
 
Actually performing the maximization in Eq. (9) is 

beyond the scope of this article. It can be shown that 
  is given by the square of the maximum Schmidt 
coefficient of , maxi .6,13 

The two entangled states we are interested in 
detecting are the Bell states of two photons 

 

  
1
2

HH VV    , (10) 

 
where H and V correspond to horizontally and 
vertically polarized photons. This is the Schmidt 
decomposition of  , so the maximum Schmidt 

coefficient is 1/ 2 , and the witness operators are 
 

 

 

1 ˆˆ 1
2
1 1̂
2

.

W

HH HH VV VV

HH VV VV HH

     

  


 

 (11) 

 
In the laboratory, we are able to perform local, 

projective measurements. That is, both Alice and Bob 
perform projective measurements on their respective 
particles. The first two terms after the 1̂  in Eq. (11) 
take this form, but the two terms in parentheses don’t. 

ent
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However, we recognize that Alice and Bob are not 
limited to performing measurements in the horizontal-
vertical basis. Define the diagonal and antidiagonal 
(+45o linear), and the left- and right- circular 
polarization states as 

 

     
1
2

D H V   ,  
1
2

A H V   (12) 

   
1
2

L H i V   ,  
1
2

R H i V  . (13) 

 
We rewrite our witness using these operators as: 

 





1 ˆˆ 1
2

.

W HH HH VV VV DD DD

AA AA LL LL RR RR

   


   

 (14) 

 
Defining  ,P a b  to be the joint probability that Alice 
measures her photon to have polarization a, and Bob 
measures his photon to have polarization b, we find 
that the expectation value of the witness operators is 

 

    
     

      

1ˆ 1 , , ,
2

, , , .

W P H H P V V P D D

P A A P L L P R R

    

   

 (15) 

EXPERIMENTS 

Our experiments are similar to those performed in 
Ref. [7], but we use equipment that is currently found 
in many undergraduate laboratories.4 The experimental 
apparatus is shown in Fig. 1. A 405 nm laser diode 
pumps a pair of Type-I beta-barium borate crystals, 
whose axes are oriented at right angles with respect to 
each other. Down converted photons pass through a 
series of wave plates and polarizing beam splitters, 
before being focused onto multimode optical fibers and 
detected with single-photon counting modules. 

The polarization states of the down converted 
photon pairs are adjusted using the techniques of 
previous experiments.4,8 The states that we are trying to 
produce take the form  

 

    
1
2

iHH e VV    . (16) 

 
The birefringent plate in the pump beam is mounted on 
a tilt stage with a micrometer, and is used to adjust the 
relative phase  ; note that 0   yields   and 

    yields  . The techniques described in Refs. 

 

                 
 

FIGURE 1. The experimental apparatus. Here /2 denotes a 
half-wave plate, BP denotes a birefringent plate, DC denotes 
down conversion crystals, WP denotes the wave plates used 
to do the measurement projections, RP denotes a Rochon 
polarizer, and SPCMs are the single-photon counting 
modules. 

 
4 and 8 allow us to easily determine 0   and    . 
We extrapolate between these two tilt angles to 
determine the phase angle of the state. 

However, our experimentally produced states are 
not pure. We model our states as  

 

 
   

 

ˆ

1 .
2

p

p HH HH VV VV

     


 

 (17) 

 
This density operator represents our photons as being 
in the entangled state     with probability p, and 

in an equal mixture of the states HH  and VV  with 
probability 1 p .  

With the optional wave plates removed (see Fig. 1) 
horizontally polarized photon pairs are directed to 
detectors A and B, and vertically polarized photons are 
directed to detectors A’ and B’. We can thus measure 
the probabilities  ,P H H  and  ,P V V . The 
probabilities of detecting diagonal and antidiagonal 
photon pairs are obtained by inserting properly 
oriented half-wave plates before the Rochon polarizers. 
To measure the circular polarization probabilities we 
insert properly oriented quarter-wave plates. 

Figure 2 shows the experimental data for our two 
witnesses, and the CHSH parameter S.8,9 In Fig. 2(a) 
we see that when we are creating   ( near 0), 

Ŵ   indicates that the state is entangled, and Ŵ   

does not. This is as we would expect, because Ŵ   is 
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FIGURE 2. (a) Ŵ   (red circles) and Ŵ   (blue 

squares) are plotted as a function of the entangled state 
phase,  . (b) The CHSH parameter S is plotted as a function 
of the entangled state phase,  . The points are experimental 
data, while the solid lines are theoretical predictions. 
Statistical (vertical) error bars are smaller than the markers. 
Horizontal error bars are / 40 , which is our best estimate 
of how accurately we can set the phases. 

 
constructed to witness this entangled state, while Ŵ   
is not. Their behavior switches as  approaches  and 
we are constructing state  . Note that the version 
of the CHSH inequality that we use detects 
entanglement in   when 2S  . However, Ŵ   
does a “better” job of detecting this entanglement: 
Ŵ   indicates that the point at 1.25 rad   is 

entangled, while S does not.  
The expectation values Ŵ   are obtained from 

the same data, but computed differently. The data for S 
is obtained separately because it requires different 
measurement settings. Our technique for obtaining the 
measurements in Fig. 2 is to set the value of , measure 
Ŵ   and S one after the other, then change  and 

repeat. We note that at 0   in Fig. 2 
ˆ 0.4042 0.0025W     , which indicates that the 

state is entangled by over 160 standard deviations for 
300 s of counting time. This same state yields 

2.521 0.012S   , which violates the classical 
inequality by 40 standard deviations for 400 s of 
counting time. 

For states described by Eq. (17), the theoretical 
expectation values of the witness operators, are  

 

 ˆ cos
2
pW     . (18) 

 
We treat p as a free parameter, and use it to fit our data 
for Ŵ  ; we find that 0.83 0.01p   . Once this 

value has been determined for Ŵ  , we use it to 

determine the theoretical predictions for Ŵ   and S. 

Thus, we use one free parameter for all three 
theoretical curves shown in Fig. 2.  

CONCLUSIONS 

We have experimentally measured the expectation 
values of two different entanglement witness operators 
Ŵ   in an undergraduate laboratory, and compared 

them to measurements of the CHSH parameter S. 
Determining Ŵ   is “easier” in that they require only 

three measurements, as compared to four 
measurements for S. The witness operators also 
indicate entanglement for states that S does not, and 
they yield a larger violation of classical physics (in 
terms of the number of standard deviations that a 
classical inequality is violated). 
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